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ABSTRACT 6 
When examining environmental correlates of walking distance to transit stops, few studies report 7 
the importance of spatial attributes relative to other factors. Furthermore, previous studies often 8 
assume that they have linear relationships with walking distance. Using the 2016 Transit On 9 
Board Survey in the Minneapolis and St. Paul Metropolitan Area, this study adopted the gradient 10 
boosting decision trees method to examine the relationships between walking distance and 11 
spatial attributes. Results showed that spatial attributes collectively have larger predictive power 12 
than other factors. Moreover, they tend to have non-linear associations with walking distance. 13 
We further identified the most effective ranges of spatial attributes to guide stop area planning 14 
and stop location choice in the region. 15 
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1 INTRODUCTION 1 
Walking access to transit plays a critical role in determining transit use and guiding transit 2 
planning. Transit users often walk to and from transit stops (Hsiao et al., 1997). They are less 3 
likely to use transit if stops are not within a walkable distance (Loutzenheiser, 1997; Zhao et al., 4 
2003). Moreover, scholars and practitioners often use walking distance to transit to determine 5 
transit catchment/service areas, which are fundamental to ridership prediction and the assessment 6 
of economic development associated with transit (El-Geneidy et al., 2014). This study provides a 7 
nuanced understanding of transit users’ walking distance and helps guide spatial planning around 8 
stops, as well as stop location choice. 9 

Many studies examine environmental correlates of walking distance to transit and 10 
conclude that many spatial characteristics (such as density and diversity) around transit stops are 11 
associated with walking distance (Loutzenheiser, 1997; Maghelal, 2011). These findings offer 12 
critical implications for stop area planning. However, as discussed in the next section, the 13 
literature leaves a couple of critical questions unanswered. To begin with, a limited number of 14 
studies assess how large a role spatial attributes play in affecting travel behavior (Van Wee and 15 
Handy, 2016), and few emphasize walking distance to transit. The assessment is central to the 16 
efficacy of using land use policies to shape travel behavior through spatial planning (Stevens, 17 
2017a). Moreover, previous studies often assume that spatial attributes have linear relationships 18 
with walking distance. However, changing the built environment may be infertile in altering 19 
travel behavior once certain thresholds of spatial attributes are reached (Ding et al., 2018). 20 
Accordingly, planners are eager to know the effective ranges of spatial attributes. For example, 21 
how dense is enough to influence transit riders’ walking distance?  22 

To fill these two gaps, this study employs gradient boosting decision trees (GBDT) on the 23 
2016 Transit On Board Survey data in the Minneapolis-St. Paul (Twin Cities) Metropolitan Area. 24 
It answers two sets of questions: 1) How important is the collective contribution of spatial 25 
attributes to predicting walking distance, relative to the social environment, individual 26 
characteristics and trip features? 2) Are the associations between spatial attributes and walking 27 
distance linear? Are there any thresholds that these attributes affect walking distance most 28 
effectively?  29 

Answers to these two research questions could offer important planning implications 30 
from the following two aspects. First, assessing the collective contribution of spatial attributes 31 
can offer a better understanding of the extent to which spatial attributes affect walking distance 32 
to transit, and quantifying the relative importance of individual spatial attributes can guide 33 
planners how to prioritize them when planning resources are inadequate. Second, identifying 34 
threshold effects of spatial attributes can inform planners their most effective ranges for stop area 35 
planning and stop location choice. Another important feature of this study is that we built our 36 
research on the Smart Location Database of the Environmental Protection Agency, a nationally-37 
available dataset in the US context, and shared the programming codes (Tao, 2018). Planners in 38 
other regions could readily apply our models to their local data, and inform their spatial and 39 
transit planning. 40 

The paper is organized as follows. We review the literature of walking distance to transit 41 
and identify the gaps in Section 2. We introduce the data and the GBDT approach in Section 3. 42 
Section 4 presents the results. In the final section, we summarize key findings and discuss 43 
associated implications.  44 
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2 LITERATURE REVIEW 1 
Many studies explore the correlates of walking distance to transit stops and shed light on how to 2 
influence transit users’ willingness to walk. This is important to transit ridership as walking is a 3 
primary means to reach transit. Conventionally, planners assume that riders would like to walk 4 
400 meters to reach a bus stop and 800 meters to reach a rail station (Gutiérrez and García-5 
Palomares, 2008; Hsiao et al., 1997; Zhao et al., 2003). These distances define the size of the 6 
catchment area of transit stops. However, a growing number of studies question these rules of 7 
thumb and scrutinize walking distance (or time) to transit stops and associated factors.  8 

The literature suggests that walking distance is associated with the spatial attributes 9 
surrounding transit stops, demographic characteristic of transit users, and the attributes of transit 10 
service. First, spatial attributes are correlates of walking distance. Previous studies show that 11 
walking distance is affected by population density (El-Geneidy et al., 2014; Jiang et al., 2012), 12 
job density (Wang and Cao, 2017), intersection density (El-Geneidy et al., 2014; Wang and Cao, 13 
2017), and sidewalk density or availability (Maghelal, 2011; Tilahun and Li, 2015). Moreover, 14 
transit users are willing to walk longer in a pedestrian-friendly area (Jiang et al., 2012; 15 
O’Sullivan and Morrall, 1996). Second, individual characteristics affect walking distance. For 16 
example, young people and men tend to walk a longer distance to reach transit stops than seniors 17 
and women, respectively (Alshalalfah and Shalaby, 2007; El-Geneidy et al., 2014). Auto 18 
ownership, household income, and household size also have positive effects on walking distance 19 
because households with more vehicles, higher incomes, and more members are more likely to 20 
be choice riders and less likely to live close to transit (Alshalalfah and Shalaby, 2007; El-21 
Geneidy et al., 2014). Third, transit service features are significant predictors of walking 22 
distance. Transit users tend to walk a longer distance to transit stops that have more frequent 23 
services and shorter waiting time (Alshalalfah and Shalaby, 2007; O’Sullivan and Morrall, 24 
1996). They are also willing to walk longer if their total trip length is longer, but they will walk 25 
less if they need to make transfers (El-Geneidy et al., 2014). 26 

Although many studies substantiate that spatial attributes have statistically significant 27 
relationships with walking distance, limited attention is paid to the practical importance of these 28 
findings. In fact, effect size matters (Ziliak and McCloskey, 2004). In the realm of planning, 29 
several scholars engage in a heated debate on the efficacy of using land use policies to influence 30 
travel behavior in the Journal of the American Planning Association (Ewing and Cervero, 2017; 31 
Nelson, 2017; Stevens, 2017b). Among others, Wang and Cao (2017) study walking distance of 32 
transit egress trips in the Twin Cities and estimate the elasticity of each spatial variable, the 33 
effect size. However, they did not discuss the collective contribution of these variables. Land use 34 
changes are often multi-dimensional; the collective effects of these changes could be substantial 35 
even if the impact of a single spatial variable is moderate (Ewing and Cervero, 2017). Planners 36 
are interested in knowing how much effect on travel behavior they could bring collectively if 37 
they implement a set of land use instruments (Van Wee and Handy, 2016). Furthermore, because 38 
individual characteristics and transit service features confound the relationship between spatial 39 
attributes and walking distance to transit stops, how important is the collective effect of spatial 40 
attributes relative to these other factors? Assessing the relative contribution of different factors is 41 
also an important topic in the land use-travel behavior literature (Cao, 2019; Mokhtarian and Van 42 
Herick, 2016; Singh et al., 2018). 43 

Most studies assume that the associations between spatial attributes and walking distance 44 
are linear (Jiang et al., 2012; Townsend and Zacharias, 2010; Zhao and Deng, 2013). Although 45 
some apply generalized linear regression (El-Geneidy et al., 2014; Wang and Cao, 2017), the 46 
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pre-defined relationship may mask the nuanced connections between different spatial attributes 1 
and walking distance to transit. A growing number of scholars have question about the 2 
assumption that spatial attributes have linear or pre-defined relationships with travel behavior 3 
(Van Wee and Handy, 2016). Some studies reject the assumption. For instance, Ding et al. 4 
(2018) find that the influence of population density on driving distance is saturated at 30 persons 5 
per hectare in Oslo and the effect of distance to the city center varies at different intervals of the 6 
distance and is also saturated after a threshold is reached. Wang and Cao (2017) conclude that 7 
the effects of spatial attributes on walking distance vary by stop location. For instance, job 8 
accessibility tends to have a larger effect for stops located in suburban employment centers than 9 
for those in downtown areas and non-downtown areas. This finding implies a non-linear 10 
relationship between job accessibility and walking distance. However, the relevant exploration of 11 
walking distance to transit is limited. In particular, each of spatial attributes may have differing 12 
non-linear relationships with walking distance. If true, the “one size fits all” assumption will 13 
produce erroneous results on the associations between spatial attributes and walking distance, 14 
and hence will mislead planning practice.   15 

3 DATA AND METHOD 16 
3.1 Data and variables 17 
This study investigates urban local bus users’ walking distance from home to the boarding stop 18 
in the Twin Cities (Figure 1). The data source is the 2016 Transit On Board Survey, conducted 19 
by the Metropolitan Council, the Metropolitan Planning Organization in the region. The data 20 
were collected on weekdays from April 2016 to February 2017. In the survey transit users were 21 
asked to provide the following information: trip purposes, starting and ending locations, access 22 
and egress modes, transit routes, and demographic characteristics. Besides paper-based 23 
questionnaires, respondents could use a laptop to complete the survey, thus avoiding manual data 24 
entry. Furthermore, respondents could choose their starting and ending locations through an 25 
interactive map, enhancing location accuracy. 26 
 27 

 28 
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Figure 1. Study Area 1 
 2 
In this research, we studied home-based trips: either trip destinations or originations are 3 

home. Walking distance between home and the transit stop, the dependent variable in this study, 4 
was measured as the shortest path in the street network through the Network Analysis function in 5 
ArcGIS. Due to some probable errors, the trips with a walking distance longer than one mile 6 
(1,609.3 m) were removed from the analysis. After data pre-processing, 7,887 trips were 7 
included in the study. About 53% of these trips were made in the early morning (6 am – 9 am) or 8 
the late afternoon (3 pm – 6:30 pm), 35% were during the midday (9 am – 3 pm), and 12% were 9 
in the evening (6:30 pm – 9 pm). As to trip direction, 58% of these trips started from home, and 10 
42% were heading to home. Moreover, 38% of these trips were from home to work, and 28% 11 
traveled in the opposite direction. The mean walking distance is about 317 meters.  12 

Table 1 defines four categories of independent variables, and Table 2 presents their 13 
descriptive statistics. Trip attributes and demographics were from the Transit On Board Survey. 14 
We obtained spatial attributes and socioeconomic characteristics directly from the Smart 15 
Location Database of the United States Environmental Protection Agency (EPA, 16 
http://www.epa.gov/smartgrowth). In this study, spatial attributes refer to the spatial 17 
characteristics related to the built environment, which could be manipulated by urban planners. 18 
These two sets of variables are measured at the census block group (CBG) level, where transit 19 
stops are located. We intentionally chose to use this database so that transit planners in other 20 
regions can duplicate our study with minimal effort.  21 
 22 
Table 1. Variable definition 23 

Variable Description 
Walking distance Street network distance (meter) from home to the transit stop 

Trip attributes 

Peak hour A dummy variable equaling to 1 if the starting time of the trip is during peak hours 
(6:00-9:00 am or 4:00-6:30 pm) 

Trip distance Street network distance (mile) from home to the trip destination 
Transfer Number of transfers during the trip 
Work destination A dummy variable equaling to 1 if the destination of the trip is a workplace or a school 

Socioeconomic attributes (Census Block Group) 
Working aged 
population Percentage of population that is working aged 

Households with 
zero cars Percentage of zero-car households 

Low-wage worker Percentage of low-wage workers among all workers 
Spatial attributes (Census Block Group) 

Population density Gross population density (people/acre) on unprotected land 
Job density Gross employment density (jobs/acre) on unprotected land 

Job and household 
entropy 

Job and household entropy (based on number of activities generated by occupied 
housing and all five employment categories: retail, office, industrial, service, and 
entertainment)  

Pedestrian network 
density Network density in terms of facility miles of pedestrian-oriented links per square mile 

Intersection density Intersection density in terms of multi-modal intersections having four or more legs per 
square mile 

http://www.epa.gov/smartgrowth
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Respondents’ demographic attributes 
Male A dummy variable equaling to 1 if the respondent is male 
White A dummy variable equaling to 1 if the respondent is Caucasian 
African American A dummy variable equaling to 1 if the respondent is African American 
Youth A dummy variable equaling to 1 if the respondent is “under 18 years old” 
Senior A dummy variable equaling to 1 if the respondent is “over 65 years old” 

Household income 

1 if less than $15,000 
2 if $15,000-$24,999 
3 if $25,000-$34,999 
4 if $35,000-$59,999 
5 if $60,000-$99,999 
6 if $100,000-$149,999 
7 if $150,000-$199,999 
8 if $200,000 or more 

Job status A dummy variable equaling to 1 if the respondent has a full-time or part-time job 
Vehicle A dummy variable equaling to 1 if the respondent has access to a vehicle 
Driving license A dummy variable equaling to 1 if the respondent has a driver’s license 
Transit pass A dummy variable equaling to 1 if the respondent has a transit pass 

 1 
Table 2. Descriptive statistics of variables 2 

Variable Mean Standard  
deviation Min Max 

Walking distance (m) 317.24 300.66 0.09 1,607.75 

Trip attributes 
Peak hour 0.45 0.50 0 1 
Trip distance (mile) 4.84 3.21 0.13 32.68 
Transfer 0.31 0.53 0 3 
Work destination 0.67 0.47 0 1 

Socioeconomic attributes 
Working aged population 79.1% 9.8% 46.9% 99.6% 
Households with zero cars 16.9% 14.3% 0 89.5% 
Low-wage worker 26.8% 5.8% 12.5% 51.9% 

Spatial attributes 
Population density (people/acre) 13.96 7.91 0.09 43.60 
Job density (job/acre) 5.34 6.32 0 35.83 
Job and household entropy 0.52 0.21 0 0.97 
Pedestrian network density (mile/Sq.mile) 18.51 5.69 3.30 40.30 
Intersection density (intersection/Sq.mile) 14.51 17.12 0 119.44 

Demographic attributes 
Male 0.51 0.50 0 1 
White 0.58 0.49 0 1 
African American 0.29 0.46 0 1 
Youth 0.06 0.24 0 1 
Senior 0.05 0.22 0 1 
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Household income 3.43 1.68 1 8 
Job status 0.78 0.41 0 1 
Vehicle 0.30 0.46 0 1 
Driving license 0.58 0.49 0 1 
Transit pass 0.11 0.31 0 1 

 1 
3.2 Method 2 
We used GBDT to examine the relationships between spatial attributes and walking distance, 3 
controlling for other factors. The approach was originally developed to predict and interpret data 4 
in computer science, and has recently been applied in the field of transportation (Ding et al., 5 
2019; Ma et al., 2017; Wu et al., 2019). It combines both decision tree and gradient boosting 6 
methods (Elith et al., 2008; Friedman, 2001).  7 

The decision tree method is to partition an observation space into several regions based 8 
on some specific rules. It identifies the regions having the most “homogenous” features and fit a 9 
constant to every region for prediction (Elith et al., 2008, p. 803). As the example shown in 10 
Figure 2, we use two criteria to categorize the observations into three regions. The two criteria 11 
are whether variable X is smaller than constant a, and whether variable Y is smaller than constant 12 
b. Variable X and Y are independent variables, which could be spatial characteristics, 13 
socioeconomic characteristics, or other variables in this study. Then we use the average walking 14 
distance of the observations in each region to make predictions. The partitioned regions are 15 
named terminal nodes or leaves of a decision tree. 16 
 17 

 18 
Figure 2 An example of regression trees 19 

 20 
The gradient boosting method is to aggregate many weak (or simple) models into one 21 

strong (or complex) model in a sequential procedure (Elith et al., 2008). It is usually applied to 22 
search the optimal solution (e.g., the minimum value) to a problem with a wide range. As the 23 
example shown in Figure 3, after a starting point is randomly selected, the next step is to find the 24 
‘steepest’ route to reach the minimum value as quickly as possible. The slope (or direction) of 25 
this ‘steepest’ route is called gradient. After several steps, we could reach the minimum value in 26 
the curve. 27 

Integrating these two methods, the main target of the GBDT approach is to combine 28 
many trees linearly and sequentially to make the prediction have the best performance. Usually a 29 
loss function is defined to evaluate the performance of a model.  30 
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 1 

  2 
Figure 3 An example of gradient boosting 3 

 4 
We applied the “gbm” package in the R programming language to estimate our model. 5 

Ridgeway (2019) designed the package based on Friedman’s (2002, 2001) work. The algorithm 6 
can be described as follows. At the setup stage, we need to specify several parameters, including 7 
training dataset with 𝑁 observations, the number of iterations	𝑇, the depth of each tree	𝐾, and the 8 
shrinkage parameter 𝜆. We then initialize a function 𝑓'(𝒙) as a constant (usually, the mean 𝑦!), 9 
and set  10 

𝑓'(𝒙) = 𝑎𝑟𝑔𝑚𝑖𝑛! ∑ 𝜓"
#$% (𝑦# , 𝜌)                                            (1) 11 

where 𝜓(𝑦# , 𝜌) is the loss function for the estimation function of the 𝑖th observation, and 𝜌 is the 12 
step length. We used the Gaussian distribution in our research, and the corresponding loss is 13 
RMSE (root mean squared error). 14 

For iteration 𝑡 (1 ≤ 𝑡 ≤ 𝑇), we first calculate the negative gradient to ensure that the 15 
value of the loss function 𝜓 will decrease in the next iteration (Friedman, 2001). 16 

𝓏# = − &
&'(𝒙!)

𝜓<𝑦# , 𝑓(𝒙#)=|'(𝒙!)$'+(𝒙!)		𝑖 = 1,… ,𝑁                                      (2) 17 

 Friedman (2002) suggested using subsamples from the training dataset, instead of the 18 
whole training dataset. This subsampling improves the performance of the algorithm 19 
significantly. Ridgeway incorporated this into the gbm package and selected 𝑝	 × 	𝑁 20 
observations randomly from the training dataset, where 𝑝 is the subsampling rate. This parameter 21 
is 0.5 by default in the package and usually generates a smaller deviance (Ridgeway, 2007). For 22 
those selected observations, fit a regression tree with 𝐾 terminal leaves, 𝑔(𝑥) = 𝐸(𝓏|𝒙) and 23 
compute the optimal step length of each leaf, 𝜌%, … , 𝜌,, as 24 

𝜌- = 𝑎𝑟𝑔𝑚𝑖𝑛! ∑ 𝜓(𝑦# , 𝑓'(𝒙#) + 𝜌)𝑿!∈0"                                              (3) 25 

where 𝑆- is the subset of the training dataset, which lies in leaf 𝑘. 26 
 In the last step of the current iteration, update 𝑓'(𝒙) using Equation (4) and start the next 27 
iteration 28 
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𝑓'(𝒙) ← 𝑓'(𝒙) + 𝜆𝜌-(𝒙)                                                       (4) 1 

where 𝑘(𝒙) is the index of the regression tree leaf in which an observation with feature 𝒙 would 2 
fall. We iterate the above process for 𝑇 times to obtain our final estimation function. 3 
 GBDT is flexible in that users could change several parameters as needed. Generally, 4 
three parameters are important to the model and require regularization. The shrinkage 𝜆, also 5 
known as learning rate, is the portion of the contribution of each decision tree that will be added 6 
to the final model at each iteration. A smaller shrinkage is preferable since it could improve the 7 
prediction of a model, but at the same time it increases the number of trees needed to fit the 8 
model and thus the estimation is more time-consuming. We used 0.001 in our research to balance 9 
computing time and prediction performance, as suggested by Ridgeway  (2019, p. 7). The depth 10 
of tree 𝐾 indicates the complexity of a tree structure. It is the number of terminal nodes in the 11 
tree. It takes more time to fit a complex tree. Another important parameter is the number of 12 
iterations	𝑇. Although a higher number of iterations improves the prediction performance of a 13 
model, the model is easily to be overfitting. Overfitting occurs when the model fits too closely to 14 
the training dataset but not good to other datasets. We introduced a five-fold cross validation 15 
method to alleviate the problem of overfitting. That is, the original dataset is divided into five 16 
parts, among which four parts are used to train models, and the remaining one is for testing. The 17 
model’s fitness to the test dataset will be applied to evaluate its performance. 18 

Compared to traditional methods (such as linear regression and generalized linear 19 
regression), the GBDT approach has several advantages. It offers a more accurate prediction, is 20 
less vulnerable to outliers, does not require the dependent variable to follow a certain 21 
distribution, can accommodate missing data of independent variables, and can help address the 22 
multicollinearity issue (Ding et al., 2018; Elith et al., 2008). Besides its strong predictive power, 23 
the GBDT approach can be used to explain the relationships between variables because it “can 24 
provide information concerning the underlying relationship between the inputs x and the output y 25 
variable” (Friedman, 2001, p. 1216).  26 

 The GBDT approach is particularly useful to address our research questions for two 27 
reasons. First, it can generate the relative importance of independent variables (Friedman, 2001). 28 
The relative importance represents the extent to which an independent variable contributes to 29 
predicting the dependent variable. Because the relative importance of all variables adds up to 30 
100%, we can assess the contribution of one variable or a group of variables, relative to other 31 
variables. More importantly, it can produce a partial dependence plot to illustrate the relationship 32 
between the dependent variable and an independent variable, controlling for other independent 33 
variables (Friedman, 2001). This plot can show whether the relationship is non-linear. 34 

This approach also has a few limitations. It cannot offer statistical inference for 35 
independent variables; GBDT is unable to provide p-values to show the significance level of 36 
independent variables. By contrast, we emphasized practical significance of independent 37 
variables in this study. Another one is overfitting. As discussed before, we applied the cross-38 
validation method to address the influence of overfitting. Lastly, this method can model only the 39 
relationships between variables within the observation space. Readers should be cautious when 40 
they try to extrapolate the relationships. However, this drawback also exists in other statistical 41 
models.   42 



10 
 

4 RESULTS 1 
4.1 Model regularization 2 
We set the shrinkage 𝜆 as 0.001, the maximum number of iterations as 50,000, and the depth of 3 
tree 𝐾 from 1 to 49. A five-fold cross-validation was applied to determine the best number of 4 
iterations. We compared model performance using RMSE. As the depth of tree increases, both 5 
RMSE and the number of iterations decrease (Figure 4). Because RMSE decreases substantially 6 
when the depth of tree is smaller than 35, we chose 35, with a relatively small RMSE of 295.2, 7 
as the depth of tree. The model was converged after 2559 iterations. The Pseudo R2 is 0.192. 8 
 9 
 10 

 11 
Figure 4 RMSE and number of iterations versus tree depth 12 

 13 
4.2 The relative importance of independent variables 14 
Table 3 presents the relative importance of all the independent variables in predicting walking 15 
distance to transit stops in the form of percentage. The sum of all the relative importance of these 16 
variables is 100%. Among all categories of the independent variables, spatial attributes 17 
collectively contribute to 41.6% of the prediction, which is larger than the collective contribution 18 
of socioeconomic attributes (23.5%); trip attributes (20.2%); and demographics (14.7%). 19 
Therefore, spatial attributes have the largest power in predicting walking distance among the 20 
variables tested. This shows the efficacy of affecting transit users’ walking behavior through 21 
planning. 22 

In terms of individual spatial attributes, job and household entropy (an indicator of land 23 
use mix) has the largest contribution (with a relative importance of 10.5%) in predicting walking 24 
distance to transit stops, followed by population density, pedestrian network density, job density, 25 
and intersection density. Population density, pedestrian network density, and job density have 26 
similar predictive power, around 8%.  27 

Among other variables, trip distance has the largest contribution (16.0%). All three 28 
socioeconomic attributes also play an important role; their contributions range from 7.2% to 29 
8.5%. Rider demographics have a relatively limited influence. Specifically, household income 30 
has the largest predictive power among all demographics, with a relative importance of 6.2%. 31 
The individual contribution of all other variables does not exceed 2%. 32 



11 
 

 1 
Table 3. Relative importance of all the variables 2 

Variable Relative importance (%) Total (%) 
Trip attributes 

Peak hour 1.2 

20.2 
Trip distance 16.0 
Transfer 1.9 
Work destination 1.1 

Socioeconomic attributes 
Working aged population 8.5 

23.5 Households with zero cars 7.2 
Low-wage worker 7.7 

Spatial attributes 
Population density 8.9 

41.6 
Job density 8.0 
Job and household entropy 10.5 
Pedestrian network density 8.5 
Intersection density 5.8 

Demographic attributes 
Male 1.5 

14.7 

White 1.0 
African American 0.8 
Youth 0.7 
Senior 0.3 
Household income 6.2 
Job status 1.0 
Vehicle 1.1 
Driving license 1.4 
Transit pass 0.8 
Total  100 

 3 
4.3 The associations between spatial attributes and walking distance 4 
We use a partial dependence plot to demonstrate how a spatial attribute is associated with the 5 
predicted walking distance, controlling for all other independent variables. Besides the fitted 6 
curves, we smoothened them to highlight the general trend of the relationship. Figure 5 presents 7 
the partial dependence plot of population density. The general trend is that population density is 8 
negatively associated with walking distance, consistent with El-Geneidy et al. (2014). As 9 
population density increases, transit users tend to walk a shorter distance. In densely populated 10 
areas, more transit stops are needed to meet the travel demand of more users. Consequently, 11 
transit users could walk a shorter distance to reach one of those stops. In particular, when 12 
population density increases from 0 to 18 people/acre, walking distance drops substantially from 13 
371 meters to 303 meters. Walking distance becomes stable after 18 people/acre. After about 30 14 
people/acre, walking distance has a slight increase from 303 meters to 315 meters, with unknown 15 
reasons. From the perspective of stop area planning, densifying transit serving areas to 18 16 
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people/acre or larger helps shorten the walking distance to transit stops. Figure 6 identifies the 1 
CBGs where population density is not less than 18 people/acre in the region. We found that most 2 
of these CBGs are located in the downtowns and adjacent areas. Because the vast majority of 3 
CBGs do not meet the threshold, there is a great potential to shorten users’ walking distance by 4 
densifying the areas along existing transit routes.  5 
  6 

 7 
Figure 5. Partial dependence plot of population density2 8 

 9 
Figure 6. Population density distribution 10 

 11 

 
2 The relative importance of the variable is presented in the label for the horizontal axis, same for the following 
partial dependence plots. 
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Job density is positively associated with walking distance (Figure 7). As job density 1 
increases, people tend to walk a longer distance to reach transit stops. On one hand, more jobs 2 
near residential areas may make these areas more pedestrian-friendly (such as main streets) and 3 
hence encourage walking. On the other hand, high job density around transit stops may push 4 
residential developments to the periphery of business establishments. Residents may have to 5 
walk a longer distance to reach transit stops. When job density increases from 0 to 10 jobs/acre, 6 
walking distance increases from 301 to 320 (note that there is some noise at the starting point of 7 
the fitted curve). Walking distance is relatively stable from 10 to 20 jobs/acre but increases 8 
rapidly again after 20 jobs/acre. The curve is saturated at about 30 jobs/acre. For stop area 9 
planning, increasing job density to 10 jobs/acre could help increase rider willingness to walk 10 
longer while for stop location choice, the locations with job density larger than 10 jobs/acre 11 
should be prioritized to enlarge the service area. Figure 8 illustrates the CBGs where job density 12 
is larger or equal to 10 jobs/acre. To maximize transit service areas, the job-rich areas along 13 
existing transit routes, particularly those in urban areas, could be potential locations for transit 14 
stops.  15 
 16 

 17 
Figure 7. Partial dependence plot of job density 18 

 19 
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 1 
Figure 8. Job density distribution 2 

 3 
Job and household entropy around transit stops is positively correlated with walking 4 

distance (Figure 9). However, it is the larger mix that is associated with walking distance. In 5 
particular, when the index increases from 0 to 0.7, the walking distance is relatively constant. In 6 
the interval from 0.7 to 1.0, it rises dramatically from 309 meters to 450 meters. Figure 10 7 
presents the areas where job and house entropy is larger or equal to 0.7 in the region. The highly 8 
mixed areas along transit routes could be prioritized for transit stops to enlarge transit service 9 
areas. It is worth noting that although many CBGs outside of transit service areas have higher 10 
entropy index, they are not suitable for frequent transit services.  11 

 12 

 13 
Figure 9. Partial dependence plot of job and household entropy 14 
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 1 
Figure 10. Job and household entropy 2 

 3 
Figure 11 shows that pedestrian network density has a positive relationship with walking 4 

distance. This result is consistent with Maghelal (2011). Higher pedestrian network density can 5 
encourage transit users to take a longer walk to reach transit stops. Pedestrian network density 6 
has almost a linear relationship with walking distance in the interval from 0 to 33 miles per 7 
square mile. After that, walking distance increases to 355 meters, the saturation level. Figure 12 8 
shows that there is a positive association between intersection density and walking distance, 9 
consistent with El-Geneidy et al. (2014). Higher intersection density around transit stops 10 
indicates better network connectivity, and hence increases riders’ willingness to walk a longer 11 
distance to stops. After intersection density reaches 90 per square mile, walking distance 12 
becomes stable at 346 meters. In the Twin Cities, only several CBGs (not shown) have reached 13 
the thresholds of pedestrian network density (33 miles per square mile) and intersection density 14 
(90 per square mile). For the sake of enlarging transit service areas, there is a large room to 15 
improve these two spatial attributes.  16 

 17 
 18 
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 1 
Figure 11. Partial dependence plot of pedestrian network density 2 

 3 

 4 
Figure 12. Partial dependence plot of intersection density 5 

 6 
4.4 Comparison with linear regression 7 
We estimated a linear regression model and compared it with the GBDT model (Table 4). The 8 
partial dependence plots and the signs of the estimated coefficients in the linear regression 9 
demonstrate the relationship between independent variables and walking distance. As shown in 10 
Table 4, linear regression presents consistent results with the GBDT model in terms of spatial 11 
attributes. However, the R2 of the linear regression model is 0.027, much lower than the pseudo 12 
R2 of the GBDT model (0.192). This is not surprising because the GBDT model considers the 13 
non-linear relationships between independent variables and the dependent variable, and improves 14 
the overall goodness of fit.  15 

We also compared the relative contribution of independent variables to walking distance. 16 
In linear regression, adding one independent variable will improve R2. The share of this 17 
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improvement in the total R2 is counted as the relative importance of the independent variable. 1 
Because the order of adding one variable affects the improvement, we computed the average 2 
improvement of the variable by considering all possible orders. This computation was carried out 3 
using the “relaimpo” package in R. Overall, the relative importance of independent variables 4 
differs between the GBDT model and the linear regression. Because the GBDT model showed 5 
the non-linear associations between independent variables and walking distance, the linearity 6 
assumption of the regression model is flawed. Therefore, the relative importance produced by the 7 
linear model is erroneous. 8 
 9 
Table 4 Comparison between GBDT and linear regression 10 

Variable GBDT Linear regression 
Relationship Relative Importance Sum Estimates % R2 Sum 

Trip attributes 
Peak hour  1.2 

20.2 

-15.9 1.8 

46.4 
Trip distance  16.0 11.2 33.3 
Transfer  1.9 -36.7 5.9 
Work destination  1.1 19.6 5.4 

Socioeconomic attributes 
Working aged population  8.5 

23.5 
100.0 3.4 

4.9 Households with zero car  7.2 4.9 0.4 
Low-wage worker  7.7 150.8 1.1 

Spatial attributes 
Population density Negative 8.9 

41.6 

-1.6 4.6 

31.7 
Job density Positive 8.0 0.9 6.2 
Job and household entropy Positive 10.5 91.3 17.2 
Network density Positive 8.5 1.6 1.1 
Intersection density Positive 5.8 0.6 2.6 

Demographic attributes 
Male  1.5 

14.7 

13.6 2.4 

17.0 

White  1.0 18.3 0.8 
African American  0.8 20.3 1.2 
Youth  0.7 29.0 0.8 
Senior  0.3 -30.2 2.9 
Household income  6.2 1.0 0.1 
Job status  1.0 20.6 2.8 
Vehicle  1.1 -22.0 3.0 
Driving license  1.4 -12.1 1.3 
Transit pass  0.8 22.1 1.7 
R2 0.192 0.027 

 11 

5 CONCLUSIONS 12 
Using the 2016 Transit On Board Survey data in the Twin Cities, we examined the importance of 13 
spatial attributes to transit users’ walking distance to stops and their non-linear associations. This 14 
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study contributes twofold to the literature and planning practice. First, it assesses the collective 1 
importance of spatial attributes relative to other influential factors and evaluates the efficacy of 2 
using land use and transit planning to shape transit users’ walking distance to access transit stops. 3 
Second, it investigates the non-linear relationships between spatial attributes and walking 4 
distance and identifies the most effective ranges of these attributes on walking distance. 5 

The results showed that spatial attributes play a more important role in predicting 6 
walking distance than trip attributes, users’ characteristics, and the socioeconomic environment. 7 
This underscores the critical role of spatial planning in influencing walking distance and 8 
provides supportive evidence for local planners to change the built environment around stops. 9 
Furthermore, all individual spatial dimensions tested here are important to riders’ walking 10 
choice. Relatively, intersection density has a smaller contribution than other four spatial 11 
attributes, namely, population density, job density, mixed-use index, and pedestrian network 12 
density.  13 

The partial dependence plots demonstrated that some spatial attributes have clear 14 
threshold effects on walking distance to stops, and that the non-linear patterns vary by variable 15 
(for example, population density and job-household entropy). First, these findings challenge the 16 
linearity assumption commonly adopted in the studies about environmental correlates of transit 17 
riders’ walking distance. Future studies should consider the non-linear associations. Second, the 18 
GBDT approach is more effective in revealing the complex non-linear relationships between 19 
spatial attributes and walking distance than traditional models (such as linear regression and 20 
generalized linear regression), because the latter have a limited capacity to uncover the varying 21 
patterns.  22 
 Among the five Ds, population density is the only variable that is negatively associated 23 
with walking distance. The negative relationship is likely to be an outcome of transit planners’ 24 
intentional effort to deploy more stops to meet transit demand in densely populated areas. From 25 
the perspective of stop location choice, placing stops closer to transit users helps reduce their 26 
walking distance, and in turn promote transit ridership (Gutiérrez et al., 2011; Hess, 2009). From 27 
the perspective of stop area planning, increasing population density around stops helps lower 28 
their walking distance. However, because densification increases development costs and may 29 
face oppositions from surrounding residents (not in my back yard), excessive densification may 30 
not be desirable. This study shows that 18 persons/acre is sufficient to optimize walking distance.  31 
 By contrast, job density, job and household entropy, pedestrian network density, and 32 
intersection density are positively associated with walking distance. These positive associations 33 
suggest that appropriate land use planning around stops has the potential to enlarge transit 34 
catchment areas. In particular, promoting employment densification, mixed-use development, 35 
and multi-modal street connectivity helps. To increase transit service areas, 10 jobs/acre should 36 
be the minimum planning goal for local centers; and for large employment centers, 30 jobs per 37 
acre should be the planning goal. Furthermore, land use should be sufficiently mixed to be 38 
effective in encourage transit riders to walk a longer distance. Because greater multi-modal 39 
network connectivity always helps enlarge transit service areas, grid street patterns with 40 
sidewalks are desirable for stop area planning.  41 

The results presented in this study should be interpreted with caution. First, the data are 42 
cross-sectional, so the relationships found here are more of correlations than causality.  This does 43 
not differ from most studies on the topic in the literature, however. Second, because this study is 44 
the first one that identifies the effective ranges of spatial attributes, the thresholds found in the 45 
Twin Cities may not be transferable to other regions with different sizes, different built 46 
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environments, and different transit supplies. The generalizability merits further investigation. We 1 
encourage planners in other regions to carry out similar studies using our study protocol with the 2 
EPA data and the R programming code (Tao, 2018). To facilitate this comparison, we 3 
intentionally used the EPA data, which are readily available for the whole nation. However, 4 
spatial attributes at the CBG level may not accurately reflect the built environment around a 5 
transit stop, particularly when it is close to the CBG boundary. Alternatively, some studies used a 6 
buffer of the stop to define its surrounding area (El-Geneidy et al., 2014; Maghelal, 2011). 7 
Future research should examine whether CBG-based spatial attributes and buffer-based ones 8 
produce consistent results.  9 

REFERENCES 10 
Alshalalfah, B.W., Shalaby, A.S., 2007. Case Study: Relationship of Walk Access Distance to 11 

Transit with Service, Travel, and Personal Characteristics. Journal of Urban Planning and 12 
Development 133, 114–118. https://doi.org/10.1061/(ASCE)0733-9488(2007)133:2(114) 13 

Cao, X.J., 2019. Examining the effect of the Hiawatha LRT on auto use in the Twin Cities. 14 
Transport Policy 81, 284–292. https://doi.org/10.1016/j.tranpol.2018.04.011 15 

Ding, C., Cao, X. (Jason), Næss, P., 2018. Applying gradient boosting decision trees to examine 16 
non-linear effects of the built environment on driving distance in Oslo. Transportation 17 
Research Part A: Policy and Practice 110, 107–117. 18 
https://doi.org/10.1016/j.tra.2018.02.009 19 

Ding, C., Cao, X., Liu, C., 2019. How does the station-area built environment influence 20 
Metrorail ridership? Using gradient boosting decision trees to identify non-linear thresholds. 21 
Journal of Transport Geography 77, 70–78. https://doi.org/10.1016/j.jtrangeo.2019.04.011 22 

El-Geneidy, A., Grimsrud, M., Wasfi, R., Tétreault, P., Surprenant-Legault, J., 2014. New 23 
evidence on walking distances to transit stops: Identifying redundancies and gaps using 24 
variable service areas. Transportation 41, 193–210. https://doi.org/10.1007/s11116-013-25 
9508-z 26 

Elith, J., Leathwick, J.R., Hastie, T., 2008. A working guide to boosted regression trees. Journal 27 
of Animal Ecology 77, 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x 28 

Ewing, R., Cervero, R., 2017. “Does Compact Development Make People Drive Less?” The 29 
Answer Is Yes. Journal of the American Planning Association 83, 19–25. 30 
https://doi.org/10.1080/01944363.2016.1240044 31 

Friedman, J.H., 2002. Stochastic gradient boosting. Computational Statistics and Data Analysis 32 
38, 367–378. https://doi.org/10.1016/S0167-9473(01)00065-2 33 

Friedman, J.H., 2001. Greedy function approximation: A gradient boosting machine. Annals of 34 
Statistics 29, 1189–1232. https://doi.org/DOI 10.1214/aos/1013203451 35 

Gutiérrez, J., Cardozo, O.D., García-Palomares, J.C., 2011. Transit ridership forecasting at 36 
station level: An approach based on distance-decay weighted regression. Journal of 37 
Transport Geography 19, 1081–1092. https://doi.org/10.1016/j.jtrangeo.2011.05.004 38 

Gutiérrez, J., García-Palomares, J.C., 2008. Distance-measure impacts on the calculation of 39 
transport service areas using GIS. Environment and Planning B: Planning and Design 35, 40 
480–503. https://doi.org/10.1068/b33043 41 

Hess, D.B., 2009. Access to Public Transit and Its Influence on Ridership for Older Adults in 42 
Two U.S. Cities. Journal of Transport and Land Use 2, 3–27. 43 
https://doi.org/10.5198/jtlu.v2i1.11 44 

Hsiao, S., Lu, J., Sterling, J., Weatherford, M., 1997. Use of Geographic Information System for 45 
Analysis of Transit Pedestrian Access. Transportation Research Record 1604, 50–59. 46 



20 
 

https://doi.org/10.3141/1604-07 1 
Jiang, Y., Christopher Zegras, P., Mehndiratta, S., 2012. Walk the line: Station context, corridor 2 

type and bus rapid transit walk access in Jinan, China. Journal of Transport Geography 20, 3 
1–14. https://doi.org/10.1016/j.jtrangeo.2011.09.007 4 

Loutzenheiser, D.R., 1997. Pedestrian Access to Transit: Model of Walk Trips and Their Design 5 
and Urban Form Determinants Around Bay Area Rapid Transit Stations. Transportation 6 
Research Record: Journal of the Transportation Research Board 1604, 40–49. 7 
https://doi.org/10.3141/1604-06 8 

Ma, X., Ding, C., Luan, S., Wang, Yong, Wang, Yunpeng, 2017. Prioritizing Influential Factors 9 
for Freeway Incident Clearance Time Prediction Using the Gradient Boosting Decision 10 
Trees Method. IEEE Transactions on Intelligent Transportation Systems 18, 2303–2310. 11 
https://doi.org/10.1109/TITS.2016.2635719 12 

Maghelal, P.K., 2011. Walking to transit: Influence of built environment at varying distances 13 
[WWW Document]. Institute of Transportation Engineers. ITE Journal. URL 14 
https://search.proquest.com/docview/851791472 (accessed 8.11.19). 15 

Mokhtarian, P.L., Van Herick, D., 2016. Quantifying residential self-selection effects: A review 16 
of methods and findings from applications of propensity score and sample selection 17 
approaches. Journal of Transport and Land Use 9, 9–28. 18 
https://doi.org/10.5198/jtlu.2016.788 19 

Nelson, A.C., 2017. Compact Development Reduces VMT: Evidence and Application for 20 
Planners—Comment on “Does Compact Development Make People Drive Less?” Journal 21 
of the American Planning Association 83, 36–41. 22 
https://doi.org/10.1080/01944363.2016.1246378 23 

O’Sullivan, S., Morrall, J., 1996. Walking Distances to and from Light-Rail Transit Stations. 24 
Transportation Research Record: Journal of the Transportation Research Board 1538, 19–25 
26. https://doi.org/10.3141/1538-03 26 

Ridgeway, G., 2019. Package ‘ gbm ’ [WWW Document]. The R Project for Statistical 27 
Computing. URL https://cran.r-project.org/web/packages/gbm/gbm.pdf (accessed 8.11.19). 28 

Ridgeway, G., 2007. Generalized Boosted Models: A guide to the gbm package. Compute 1, 1–29 
12. https://doi.org/10.1111/j.1467-9752.1996.tb00390.x 30 

Singh, A.C., Astroza, S., Garikapati, V.M., Pendyala, R.M., Bhat, C.R., Mokhtarian, P.L., 2018. 31 
Quantifying the relative contribution of factors to household vehicle miles of travel. 32 
Transportation Research Part D: Transport and Environment 63, 23–36. 33 
https://doi.org/10.1016/j.trd.2018.04.004 34 

Stevens, M.R., 2017a. Response to Commentaries on “Deos Compact Development Make 35 
People Drive Less?” Journal of the American Planning Association 83, 151–158. 36 
https://doi.org/10.1080/01944363.2016.1240044 37 

Stevens, M.R., 2017b. Does Compact Development Make People Drive Less? Journal of the 38 
American Planning Association 83, 7–18. https://doi.org/10.1080/01944363.2016.1240044 39 

Tao, T., 2018. Analyizing of people’s walking distance to access transit stops with the method of 40 
Gradient Boosting Decision Tree [WWW Document]. GitHub repository. URL 41 
https://vtao1989.github.io/DisToTransit_statistics/ (accessed 8.11.19). 42 

Tilahun, N., Li, M., 2015. Walking Access to Transit Stations. Transportation Research Record: 43 
Journal of the Transportation Research Board 2534, 16–23. https://doi.org/10.3141/2534-03 44 

Townsend, C., Zacharias, J., 2010. Built environment and pedestrian behavior at rail rapid transit 45 
stations in Bangkok. Transportation 37, 317–330. https://doi.org/10.1007/s11116-009-9226-46 



21 
 

8 1 
Van Wee, B., Handy, S., 2016. Key research themes on urban space, scale, and sustainable urban 2 

mobility. International Journal of Sustainable Transportation 10, 18–24. 3 
https://doi.org/10.1080/15568318.2013.820998 4 

Wang, J., Cao, X., 2017. Exploring built environment correlates of walking distance of transit 5 
egress in the Twin Cities. Journal of Transport Geography 64, 132–138. 6 
https://doi.org/10.1016/j.jtrangeo.2017.08.013 7 

Wu, X., Tao, T., Cao, J., Fan, Y., Ramaswami, A., 2019. Examining threshold effects of built 8 
environment elements on travel-related carbon-dioxide emissions. Transportation Research 9 
Part D: Transport and Environment 75, 1–12. https://doi.org/10.1016/j.trd.2019.08.018 10 

Zhao, F., Chow, L.-F., Li, M.-T., Gan, A., Ubaka, I., 2003. Forecasting Transit Walk 11 
Accessibility : A Regression Model Alternative to the Buffer Method. Transportation 12 
Research Record: Journal of the Transportation Research Board 1835, 16. 13 
https://doi.org/10.3141/1835-05 14 

Zhao, J., Deng, W., 2013. Relationship of Walk Access Distance to Rapid Rail Transit Stations 15 
with Personal Characteristics and Station Context. Journal of Urban Planning and 16 
Development 139, 311–321. https://doi.org/10.1061/(ASCE)UP.1943-5444.0000155 17 

Ziliak, S.T., McCloskey, D.N., 2004. Size matters: the standard error of regressions in the 18 
American Economic Review. The Journal of Socio-Economics 33, 527–546. 19 
https://doi.org/10.1016/J.SOCEC.2004.09.024 20 

 21 


